Abstract

This paper summarizes recent efforts in implementing a model of the ear's inner hair cell and auditory nerve on a neuromorphic hardware platform, the SpiNNaker machine. This exploits the massive parallelism of the target architecture to obtain real-time modeling of a biologically realistic number of human auditory nerve fibres. We show how this model can be integrated with additional modules that simulate previous stages of the early auditory pathway running on the same hardware architecture, thus producing a full-scale spiking auditory nerve output from a single sound stimulus. The results of the SpiNNaker implementation are shown to be comparable with a MATLAB version of the same model algorithms, while removing the inherent performance limitations associated with an increase in auditory model scale that are seen in the conventional computer simulations. Finally, we outline the potential for using this system as part of a full-scale, real-time digital model of the complete human auditory pathway on the SpiNNaker platform.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call