Abstract

Evolutionary algorithms have been successfully applied to design fuzzy rule-based classifiers. They are used for attribute selection, fuzzy set selection, rule selection, membership function tuning, and so on. Genetics-based machine learning (GBML) is one of the promising evolutionary algorithms for classifier design. It can find an appropriate combination of antecedent sets for each rule in a classifier. Although GBML has high search ability, it needs long computation time especially for large data sets. In this paper, we apply a parallel distributed implementation to our fuzzy genetics-based machine learning. In our method, we divide not only a population but also a training data set into subgroups. These subgroups are assigned to CPU cores. Through computational experiments on large data sets, we show the effectiveness of the proposed parallel distributed implementation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.