Abstract

Genetic fuzzy rule selection has been successfully used to design accurate and compact fuzzy rule-based classifiers. It is, however, very difficult to handle large data sets due to the increase in computational costs. This paper proposes a simple but effective idea to improve the scalability of genetic fuzzy rule selection to large data sets. Our idea is based on its parallel distributed implementation. Both a training data set and a population are divided into subgroups (i.e., into training data subsets and sub-populations, respectively) for the use of multiple processors. We compare seven variants of the parallel distributed implementation with the original non-parallel algorithm through computational experiments on some benchmark data sets.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.