Abstract
In applications such as industrial drive systems and power supply systems, the use of a three-phase voltage-source Rectifier pulse width modulation converter is becoming increasingly common. Examples of these types of applications include: Power Factor Corrections and the reduction of harmonics. The critical control requirements of an application involving a three-phase voltage-source Rectifier pulse width modulation converter are to achieve a unity power factor and to regulate the dc voltage. The unity power factor guarantees the highest possible efficiency, while the dc voltage regulation guarantees that the converter will operate as desired. In this study, a novel control method for stabilizing a Rectifier-Inverter pulse width modulation converter is designed and simulated to reach higher levels of stability while also improving dynamic performances. In the first step, the nonlinear equation system of the converter is transformed into a polytopic form. This is done with the help of the sector nonlinearity transformation. After that, a Takagi-Sugeno fuzzy controller that uses the parallel distributed compensation operating concept is applied. The design of the control system takes into account practical control requirements, such as a fast voltage tracking strategy and line-currents regulation. In order to obtain the controller gain, a series of linear matrix inequalities must be resolved. Simulations performed using Matlab/Simulink make it abundantly evident that the proposed method possesses excellent performance in terms of both voltage tracking control and unity power factor regulation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.