Abstract
Nanoparticles (NPs) generated by pulsed‐laser ablation in liquids (PLAL) have benefited many key applications due to their versatility, enlarged surface area, and high purity. However, scaling up NPs production represents one of the main requisites to commercialize this technology. The established upscaling strategy demands high power and repetition rate laser source with fast scanning systems, which are not widely available and costly. Herein, a cost‐effective alternative is proposed, the addition of static diffractive optical elements to achieve parallel processing through the multi‐beam PLAL (MB‐PLAL). In MB‐PLAL, the optimum repetition rate is reduced to compensate laser energy splitting, hence achieving a higher interpulse distance, reducing pulse shielding, and increasing NPs productivity. MB‐PLAL with 11 beams reached a factor 4 productivity increase for iron–nickel alloy (Fe50Ni50) NPs compared to the single‐beam setup (0.4–1.6 g h−1), and a factor 3 increase for gold (Au) NPs (0.32–0.94 g h−1). The scalability of the proposed MB‐PLAL technique setup is confirmed by Au and Fe50Ni50 NPs productivity experiments using 1, 6, and 11 beams, showing a linear increase in productivity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.