Abstract

Parallel convection and E × B drifts act together to redistribute heat between the strike-points in the low field side snowflake minus (LFS SF−). The cumulative heat convection from both mechanisms is enhanced near the secondary X-point and is shown to dominate over heat conduction, partly explaining why the LFS SF− distributes power more evenly than the single null (SN) or other snowflake (SF) configurations. Pressure profiles at the entrance of the divertor are strongly affected by the position of the secondary X-point and magnetic field direction indicating the importance of E × B drifts. Pressure drops of up to 50% appear between the outer-midplane (OMP) and the divertor entrance enhancing the role of parallel heat convection. The electron temperature and density profiles and the radial turbulent fluxes measured at the OMP are largely unaffected by the changes in divertor geometry, even on flux surfaces where the connection length is infinite.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.