Abstract

We have tested arrays of general-purpose Unix workstations used as MIMD systems for massive parallel computations. In particular we have solved numerically a demanding test problem with a 2D hydrodynamic code, generally developed to study astrophysical flows, by exucuting it on arrays either of DECstations 5000/200 on Ethernet LAN, or of DECstations 3000/400, equipped with powerful Alpha processors, on FDDI LAN. The code is appropriate for data-domain decomposition, and we have used a library for parallelization previously developed in our Institute, and easily extended to work on Unix workstation arrays by using the PVM software toolset. We have compared the parallel efficiencies obtained on arrays of several processors to those obtained on a dedicated MIMD parallel system, namely a Meiko Computing Surface (CS-1), equipped with Intel i860 processors. We discuss the feasibility of using non-dedicated parallel systems and conclude that the convenience depends essentially on the size of the computational domain as compared to the relative processor power and network bandwidth. We point out that for future perspectives a parallel development of processor and network technology is important, and that the software still offers great opportunities of improvement, especially in terms of latency times in the message-passing protocols. In conditions of significant gain in terms of speedup, such workstation arrays represent a cost-effective approach to massive parallel computations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call