Abstract

Modern distributed systems consisting of powerful workstations and high-speed interconnection networks are an economical alternative to special-purpose supercomputers. The technical issues that need to be addressed in exploiting the parallelism inherent in a distributed system include heterogeneity, high-latency communication, fault tolerance and dynamic load balancing. Current software systems for parallel programming provide little or no automatic support towards these issues and require users to be experts in fault-tolerant distributed computing. The Paralex system is aimed at exploring the extent to which the parallel application programmer can be liberated from the complexities of distributed systems. Paralex is a complete programming environment and makes extensive use of graphics to define, edit, execute, and debug parallel scientific applications. All of the necessary code for distributing the computation across a network and replicating it to achieve fault tolerance and dynamic load balancing is automatically generated by the system. In this paper we give an overview of Paralex and present our experiences with a prototype implementation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.