Abstract

This paper proposes two viable computing strategies for distributed parallel systems: domain division with sub-domain overlapping and asynchronous communication. We have implemented a parallel computing procedure for simulation of Ti thin film growing process of a system with 1000 × 1000 atoms by means of the Monte Carlo (MC) method. This approach greatly reduces the computation time for simulation of large-scale thin film growth under realistic deposition rates. The multi-lattice MC model of deposition comprises two basic events: deposition, and surface diffusion. Since diffusion constitutes more than 90% of the total simulation time of the whole deposition process at high temperature, we concentrated on implementing a new parallel diffusion simulation that reduces communication time during simulation. Asynchronous communication and domain overlapping techniques are used to reduce the waiting time and communication time among parallel processors. The parallel algorithms we propose can simulate the thin film growth of a system with many more particles than before under realistic deposition rates, and can provide a more efficient means for computer simulation of thin film growth.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.