Abstract

This paper investigates the a posteriori finite element bound method applied to a heat transfer problem in a multi-material electronic components array. The temperature field is obtained by solving Poisson equations and convection–diffusion equations in different regions of the computational domain. The bound method calculates very sharp lower and upper bounds of the temperature of the hottest component which is assumed to be the engineering output of interest. This paper shows that for this two-dimensional problem the bound method can yield more than an 80-fold reduction in simulation time over a fine mesh calculation (330,050 d.o.f.) while still maintaining quantitative control over the accuracy of the engineering output of interest. Parallel implementation on a Beowulf cluster is also reported.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.