Abstract

In a two- or three-dimensional image array, the computation of Euclidean distance transform (EDT) is an important task. With the increasing application of 3D voxel images, it is useful to consider the distance transform of a 3D digital image array. Because the EDT computation is a global operation, it is prohibitively time consuming when performing the EDT for image processing. In order to provide the efficient transform computations, parallelism is employed. We first derive several important geometry relations and properties among parallel planes. We then, develop a parallel algorithm for the three-dimensional Euclidean distance transform (3D-EDT) on the EREW PRAM computation model. The time complexity of our parallel algorithm is O(log/sup 2/ N) for an N/spl times/N/spl times/N image array and this is currently the best known result. A generalized parallel algorithm for the 3D-EDT is also proposed. We implement the proposed algorithms sequentially, the performance of which exceeds the existing algorithms (proposed by Yamada, 1984). Finally, we develop the corresponding parallel programs on both the emulated EREW PRAM model computer and the IBM SP2 to verify the speed-up properties of the proposed algorithms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.