Abstract

Parallel computation of a fully coupled, strongly radiating hypersonic flowfleld is carried out. A detailed multiband model is used in the radiation calculation. The radiative heat flux is calculated using one- (tangent-slab) or two-dimensional approximations in radiative transfer, or by considering three-dimensional radiative transfer directly. To reduce the vast computing time due to a spectrally detailed and multidimensional radiation calculation, a parallel computation is employed. The strategy in the parallel implementation of the code is to divide the wavelength range in the multiband model into groups of the same number of available processors, instead of dividing the computational domain. Calculations are carried out for the flowfleld over hemispheres at a speed of 15.24 km/s and an altitude of 57.9 km. The computed results are compared with those obtained in previous studies. A fair agreement of the shock standoff distance with the existing results is shown for several different radii. However, the present result gives a substantially larger radiative heat flux value at the stagnation point for smaller radius cases

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call