Abstract

Forward radiated noise of ducted fans is computed numerically on parallel processors solving the three-dimensional, time-dependent Euler equations in body-conformed coordinates with a fourth-order-accurate, finite-difference, Runge-Kutta time-integration scheme. Sound attenuation effects of inlet wall acoustic treatment are included in computations employing a time-discrete form of the standard impedance condition. A distributed computing approach with domain decomposition is used for integrating the equations in parallel using the message passing interface library routines. The abilities of the method are demonstrated with hard- and soft-wall simulations of the JT15D inlet, including flow effects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.