Abstract
We prove a number of negative results about practical (i.e., work efficient and numerically accurate) algorithms for computing the main matrix factorizations. In particular, we prove that the popular Householder and Givens methods for computing the QR decomposition are P-complete, and hence presumably inherently sequential, under both real and floating point number models. We also prove that Gaussian elimination (GE) with a weak form of pivoting, which aims only at making the resulting algorithm nondegenerate, is likely to be inherently sequential as well. Finally, we prove that GE with partial pivoting is P-complete over GF(2) or when restricted to symmetric positive definite matrices, for which it is known that even standard GE (no pivoting) does not fail. Altogether, the results of this paper give further formal support to the widespread belief that there is a tradeoff between parallelism and accuracy in numerical algorithms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.