Abstract
We study parallel solutions to the problem of implementing priority queues and priority deques. It is known that data structures for the implementation (e.g., the heap, the minmax heap, and the deap) can be constructed in linear sequential time. In this paper, we design optimal Ω((log log n)2) time parallel algorithms with n/(log logn)2 processors for the constructions on the parallel comparison tree model. For building heaps in parallel, our algorithm improves the previous best result of Ω(log n) time with n/log n processors. For building min-max heaps and deaps, our algorithms are the first attempt to design parallel algorithms for constructing the data structures of the priority deque that are cost optimal.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.