Abstract

OpenMOC-HEX, a neutron transport calculation code with hexagonal modular ray tracing, has the capability of domain decomposition parallelism based on an MPI parallel programming model. In this paper, the optimization of inter-node communication was studied. Starting from the specific geometric arrangement of hexagonal reactors and the communication features of the Method of Characteristics, the computation and communication of all the hexagonal assemblies are mapped to a graph structure. Then, the METIS library is used for graph partitioning to minimize the inter-node communication under the premise of load balance on each node. Numerical results of an example hexagonal core with 1968 energy groups and 1027 assemblies demonstrate that the communication time is reduced by about 90%, and the MPI parallel efficiency is increased from 82.0% to 91.5%.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.