Abstract

The selectivity of high performance liquid chromatography (HPLC) separations is increased using a parallel column configuration. In this system, an injected sample is first split between two HPLC columns that provide complementary separations. The effluent from the two columns is recombined prior to detection with a single multiwavelength absorbance detector. Complementary stationary phases are used so that each chemical component produces a detected concentration profile consisting of two peaks. A parallel column configuration, when coupled with multivariate detection, provides increased chemical selectivity relative to a single column configuration with the same multivariate detection. This enhanced selectivity is achieved by doubling the number of peaks in the chromatographic dimension while keeping the run time constant. Unlike traditional single column separation methodology, the parallel column system sacrifices chromatographic resolution while actually increasing the chemical selectivity, thus allowing chemometric data analysis methods to mathematically resolve the multivariate chromatographic data. The parallel column system can be used to reduce analysis times for partially resolved peaks and simplify initial method development as well as provide a more robust methodology if and when subsequent changes in the sample matrix occur (such as when new interferences show up in subsequent samples). Here, a mixture of common aromatic compounds were separated with this system and analyzed using the generalized rank annihilation method (GRAM). Analytes that were significantly overlapped on both stationary phases applied, ZirChrom PBD and CARB phases, when used in traditional single column format, were successfully quantified with a R.S.D.% of typically 2% when the same stationary phases were used in the parallel column format. These results indicate that a parallel column system should substantially improve the chemical selectivity and quantitative precision of the analysis relative to a single-column instrument.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call