Abstract

The indirect solution of constrained optimal control problems gives rise to two-point boundary value problems (BVPs) that involve index-1 differential-algebraic equations (DAEs) and inequality constraints. This paper presents a parallel collocation algorithm for the solution of these inequality constrained index-1 BVP-DAEs. The numerical algorithm is based on approximating the DAEs using piecewise polynomials on a nonuniform mesh. The collocation method is realized by requiring that the BVP-DAE be satisfied at Lobatto points within each interval of the mesh. A Newton interior-point method is used to solve the collocation equations, and maintain feasibility of the inequality constraints. The implementation of the algorithm involves: (i) parallel evaluation of the collocation equations; (ii) parallel evaluation of the system Jacobian; and (iii) parallel solution of a boarded almost block diagonal (BABD) system to obtain the Newton search direction. Numerical examples show that the parallel implementation provides significant speedup when compared to a sequential version of the algorithm.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call