Abstract

In this paper we show that any two-party functionality can be securely computed in a constant number of rounds , where security is obtained against (polynomial-time) malicious adversaries that may arbitrarily deviate from the protocol specification. This is in contrast to Yao's constant-round protocol that ensures security only in the face of semi-honest adversaries, and to its malicious adversary version that requires a polynomial number of rounds. In order to obtain our result, we present a constant-round protocol for secure coin-tossing of polynomially many coins (in parallel). We then show how this protocol can be used in conjunction with other existing constructions in order to obtain a constant-round protocol for securely computing any two-party functionality. On the subject of coin-tossing, we also present a constant-round almost perfect coin-tossing protocol, where by ``almost perfect'' we mean that the resulting coins are guaranteed to be statistically close to uniform (and not just pseudorandom).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call