Abstract

AbstractA decomposition theorem is established for a class of closed Riemannian submanifolds immersed in a space form of the constant sectional curvature. In particular, it is shown that if M has nonnegative sectional curvature and admits a Codazzi tensor with “parallel mean curvature”, then M is locally isometric to a direct product of irreducible factors determined by the spectrum of that tensor. This decomposition is global when M is simply connected, and generalizes what is known for immersed submanifolds with parallel mean curvature vector.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.