Abstract

In canonical Monte Carlo simulations, sequential updating of particles is equivalent to random updating due to particle indistinguishability. In contrast, in grand canonical Monte Carlo simulations, sequential implementation of the particle transfer steps in a dense grid of distinct points in space improves both the serial and the parallel efficiency of the simulation. The main advantage of sequential updating in parallel canonical Monte Carlo simulations is the reduction in interprocessor communication, which is usually a slow process. In this work, we propose a parallelization method for canonical Monte Carlo simulations via domain decomposition techniques and sequential updating of particles. Each domain is further divided into a middle and two outer sections. Information exchange is required after the completion of the updating of the outer regions. During the updating of the middle section, communication does not occur unless a particle moves out of this section. Results on two- and three-dimensional Lennard-Jones fluids indicate a nearly perfect improvement in parallel efficiency for large systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.