Abstract

SummaryWith the aggravation of environmental pollution and energy crisis, lithium-ion batteries are widely regarded as promising. However, the current distribution in the parallel battery pack branches is highly heterogeneous. Charging strategies based on the models can be adopted to prevent side reactions that may lead to severe degradation or even thermal runaway under various ambient temperatures. In this study, a battery model for a single cell is established by coupling a single particle model with electrolyte, degradation model, and thermal model. Besides, considering the contact resistance and wire resistance, the circuit model of a battery pack is established. A charging strategy based on minimum Li plating overpotential control is then adopted, and the effectiveness under high C-rate and low temperature to reduce capacity loss is verified by simulation. This study provides a low-loss charging strategy that can reduce the safety risk of battery packs with better performance under various ambient temperatures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.