Abstract

Liquid metal wires supported on substrates destabilize into droplets. The destabilization exhibits many characteristics of the Rayleigh-Plateau model of fluid jet breakup in vacuum. In either case, breakup is driven by unstable, varicose surface oscillations with wavelengths greater than the critical one (λ(c)). Here, by controlling the nanosecond liquid lifetime as well as stability of a rivulet as a function of its length by lithography, we demonstrate the ability to dictate the parallel assembly of wires and particles with precise placement.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.