Abstract

Superparamagnetic clustering (SPC) is an unsupervised classification technique in which clusters are self-organised based on data density and mutual interaction energy. Traditional SPC algorithm uses the Swendsen–Wang Monte Carlo approximation technique to significantly reduce the search space for reasonable clustering. However, Swendsen–Wang approximation is a Markov process which limits the conventional superparamagnetic technique to process data clustering in a sequential manner. Here the authors propose a parallel approach to replace the conventional appropriation to allow the algorithm to perform clustering in parallel. One synthetic and one open-source dataset were used to validate the accuracy of this parallel approach in which comparable clustering results were obtained as compared to the conventional implementation. The parallel method has an increase of clustering speed at least 8.7 times over the conventional approach, and the larger the sample size, the more increase in speed was observed. This can be explained by the higher degree of parallelism utilised for the increased data points. In addition, a hardware architecture was proposed to implement the parallel superparamagnetic algorithm using digital electronic technologies suitable for rapid or real-time neural spike sorting.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.