Abstract

There is considerable scientific and commercial interest in understanding the mechanics of mastication. In this paper, the authors develop quantitative engineering tools to enable this process by: (i) designing a general purpose mastication simulator test-bed based on parallel architecture manipulator, capable of producing the requisite motions and forces; and (ii) validating this simulator with a range of test-foods, undergoing various mastication cycles under controlled and monitored circumstances. Such an implementation provides a test bed to quantitatively characterize the mastication based on “chewability index”. Due to the inherent advantages of locating actuators at the base (ground) in terms of actuator efforts and structural rigidity as well as benefits of using prismatic sliders compared to revolute actuators, the 6-P-U-S system was chosen. A detailed symbolic kinematic analysis was then conducted. For the practical implementation of the test-bed, the analytical Jacobian was examined for singularities and the design was adapted to ensure singularity free operation. A comprehensive parametric study was undertaken to obtain optimal design parameters for desired workspace and end effector forces. Experiments captured jaw motion trajectories using the high speed motion capture system which served as an input to the hardware-in-the-loop simulator platform.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.