Abstract
In this paper, an automatic image-text alignment algorithm is developed for achieving more accurate indexing and retrieval of large-scale web images. First, large-scale web pages are crawled, where the informative images and their most relevant auxiliary text blocks are extracted. Second, parallel image clustering is performed to partition large-scale informative web images into a large number of clusters. By grouping the visually-similar (near-duplicate) web images into the same cluster, our parallel image clustering algorithm can significantly reduce the huge uncertainty on the relatedness between the web images and their auxiliary text terms, which can provide a good starting point for supporting automatic image-text alignment. Finally, a relevance re-ranking algorithm is developed to identify the most relevant visual text terms for the visually-similar web images in the same cluster. Our experiments on large-scale web images have obtained very positive results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.