Abstract
AbstractWe study hypersurfaces of the four‐dimensional Thurston geometry , which is a Riemannian homogeneous space and a solvable Lie group. In particular, we give a full classification of hypersurfaces whose second fundamental form is a Codazzi tensor—including totally geodesic hypersurfaces and hypersurfaces with parallel second fundamental form—and of totally umbilical hypersurfaces of . We also give a closed expression for the Riemann curvature tensor of , using two integrable complex structures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.