Abstract

A new class of normalized approximate inverse matrix techniques, based on the concept of sparse normalized approximate factorization procedures are introduced for solving sparse linear systems derived from the finite difference discretization of partial differential equations. Normalized explicit preconditioned conjugate gradient type methods in conjunction with normalized approximate inverse matrix techniques are presented for the efficient solution of sparse linear systems. Theoretical results on the rate of convergence of the normalized explicit preconditioned conjugate gradient scheme and estimates of the required computational work are presented. Application of the new proposed methods on two dimensional initial/boundary value problems is discussed and numerical results are given. The parallel and systolic implementation of the dominant computational part is also investigated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.