Abstract

In plasmas with strong field aligned currents, the most unstable mode is not always at parallel propagation, but may be at intermediate and very oblique angles. 2D particle simulations are performed in order to examine the interaction between the plasma waves at various angles and the electron and ion distributions in low β collisionless plasmas with strong electron drifts. The parallel Buneman instability is known to arise in this situation, but the simulations demonstrate that the very oblique lower hybrid (LH) waves, until recently considered unimportant, may actually play a role just as significant as the waves at parallel propagation. The LH waves are energized by a current-driven linear instability, which may be seen as the oblique limit of the Buneman or ion-acoustic instability. The simulations resolve strong LH turbulence, substantial perpendicular ion tail heating and parallel electron heating. The combined action of parallel and oblique modes results in more complete electron relaxation than may be produced by the parallel Buneman instability alone.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.