Abstract
In recent years many researchers have investigated the use of Markov random fields (MRFs) for computer vision. The computational complexity of the implementation has been a drawback of MRFs. In this paper we derive deterministic approximations to MRFs models. All the theoretical results are obtained in the framework of the mean field theory from statistical mechanics. Because we use MRFs models the mean field equations lead to parallel and iterative algorithms. One of the considered models for image reconstruction is shown to give in a natural way the graduate non-convexity algorithm proposed by Blake and Zisserman.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.