Abstract

Abstract Photonic reservoir computing has been intensively investigated to solve machine learning tasks effectively. A simple learning procedure of output weights is used for reservoir computing. However, the lack of training of input-node and inter-node connection weights limits the performance of reservoir computing. The use of multiple reservoirs can be a solution to overcome this limitation of reservoir computing. In this study, we investigate parallel and deep configurations of delay-based all-optical reservoir computing using semiconductor lasers with optical feedback by combining multiple reservoirs to improve the performance of reservoir computing. Furthermore, we propose a hybrid configuration to maximize the benefits of parallel and deep reservoirs. We perform the chaotic time-series prediction task, nonlinear channel equalization task, and memory capacity measurement. Then, we compare the performance of single, parallel, deep, and hybrid reservoir configurations. We find that deep reservoirs are suitable for a chaotic time-series prediction task, whereas parallel reservoirs are suitable for a nonlinear channel equalization task. Hybrid reservoirs outperform other configurations for all three tasks. We further optimize the number of reservoirs for each reservoir configuration. Multiple reservoirs show great potential for the improvement of reservoir computing, which in turn can be applied for high-performance edge computing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.