Abstract

Circulating tumor DNA (ctDNA) is a promising biomarker for early tumor detection and minimal residual disease (MRD) assessment in early-stage cancer, but quantifying minute amounts of ctDNA is challenging and well-designed studies on ctDNA in early-stage cancer are still lacking. Here, we adapted a sensitive next-generation sequencing (NGS) technology and performed parallel analysis of pre- and postoperative ctDNA and matched tumor tissues in a prospective cohort of patients with resectable pancreatic ductal adenocarcinoma (PDAC). In total, 70 consecutive patients undergoing curative resection for resectable PDAC were enrolled. We performed integrated digital error suppression-enhanced cancer personalized profiling by deep sequencing NGS of triple-matched samples (pre/postoperative plasma cell-free DNA [cfDNA], tumor tissue, and genomic DNA) targeting 77 genes. Preoperative ctDNA was detected in 37.7% of the evaluable patients, with a median variant allele frequency of 0.09%. Twelve additional oncogenic mutations were detected exclusively in preoperative ctDNA but not in tissue. When quantitative concentrations of ctDNA were estimated in haploid genome equivalents per milliliter (hGE/mL), the risk of early recurrence was high in patients with postoperative ctDNA >1 hGE/mL. cfDNA variants from 24.5% of patients had features compatible with clonal hematopoiesis. An optimized NGS approach might add value beyond tissue analysis through the highly sensitive detection of minute amounts of ctDNA in resectable PDAC. Postoperative ctDNA concentration could be a tool for MRD assessment. Moreover, parallel analyses of matched tissues and leukocytes might be required to accurately detect clinically relevant ctDNA.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call