Abstract

BackgroundAlthough percutaneous posterior-ring tension-band metallic plate and percutaneous iliosacral screws are used to fix unstable posterior pelvic ring fractures, the biomechanical stability and compatibility of both internal fixation techniques for the treatment of Denis I, II and III type vertical sacral fractures remain unclear.MethodsUsing CT and MR images of the second generation of Chinese Digitized Human “male No. 23”, two groups of finite element models were developed for Denis I, II and III type vertical sacral fractures with ipsilateral superior and inferior pubic ramus fractures treated with either a percutaneous metallic plate or a percutaneous screw. Accordingly, two groups of clinical cases that were fixed using the above-mentioned two internal fixation techniques were retrospectively evaluated to compare postoperative effect and function. Parallel analysis was performed with a finite element model controlled trial and a case control study.ResultsThe difference of the postoperative Majeed standards and outcome rates between two case groups was no statistically significant (P > 0.05). Accordingly, the high values of the maximum displacements/stresses of the plate-fixation model group approximated those of the screw-fixation model group. However, further simulation of Denis I, II and III type fractures in each group of models found that the biomechanics of the plate-fixation models became increasingly stable and compatible, whereas the biomechanics of the screw-fixation models maintained tiny fluctuations. When treating Denis III fractures, the biomechanical effects of the pelvic ring of the plate-fixation model were better than the screw-fixation model.ConclusionsPercutaneous plate and screw fixations are both appropriate for the treatment of Denis I and II type vertical sacral fractures; whereas percutaneous plate fixation appears be superior to percutaneous screw fixation for Denis III type vertical sacral fracture. Biomechanical evidence of finite element evaluations combined with clinical evidence will contribute to our ability to distinguish between indications that require plate or screw fixation for vertical sacral fractures.

Highlights

  • Percutaneous posterior-ring tension-band metallic plate and percutaneous iliosacral screws are used to fix unstable posterior pelvic ring fractures, the biomechanical stability and compatibility of both internal fixation techniques for the treatment of Denis I, II and III type vertical sacral fractures remain unclear

  • Vertical displaced sacral fractures (DSFs) usually result from high-energy traumas [2,4], and are often associated with sacroiliac joint (SI joint) dislocations and pelvic anterior-ring fractures, which are classified as completely unstable (Type C) according to the Tile classification for pelvic fractures; their reported mortality rate can be as high as 10% [5]

  • Biomechanical comparison of the pelvic ring between two groups of surgical finite element (FE) models Under the compression, flexion and lateral bending states, the maximum displacements and the maximum von Mises stresses of two groups of surgical FE models

Read more

Summary

Introduction

Percutaneous posterior-ring tension-band metallic plate and percutaneous iliosacral screws are used to fix unstable posterior pelvic ring fractures, the biomechanical stability and compatibility of both internal fixation techniques for the treatment of Denis I, II and III type vertical sacral fractures remain unclear. Vertical displaced sacral fractures (DSFs) usually result from high-energy traumas [2,4], and are often associated with sacroiliac joint (SI joint) dislocations and pelvic anterior-ring fractures, which are classified as completely unstable (Type C) according to the Tile classification for pelvic fractures; their reported mortality rate can be as high as 10% [5]. The treatment of vertical sacral fractures may result in complications, such as fracture malunion, post-traumatic nonunion, delayed sacral nerve injury and late-onset low back pain. Many experts advocate the reduction of fracture and reconstruction of the three-dimensional stability of the anterior- and posterior-ring, as well as for its ability to diminish the likelihood of late complications [5,6,7,8]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call