Abstract
This paper presents a framework of iterative algorithms for the variational inequality problem over the Cartesian product of the intersections of the fixed point sets of nonexpansive mappings in real Hilbert spaces. Strong convergence theorems are established under a certain contraction assumption with respect to the weighted maximum norm. The proposed framework produces as a simplest example the hybrid steepest descent method, which has been developed for solving the monotone variational inequality problem over the intersection of the fixed point sets of nonexpansive mappings. An application to a generalized power control problem and numerical examples are demonstrated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.