Abstract

We construct nonblocking networks that are efficient not only as regards their cost and delay, but also as regards the time and space required to control them. In this paper we present the first simultaneous “weakly optimal” solutions for the explicit construction of nonblocking networks, the design of algorithms and data-structures. “Weakly optimal” is in the sense that all measures of complexity (size and depth of the network, time for the algorithm, space for the data-structure, and number of processor-time product) are within one or more logarithmic factors of their smallest possible values. In fact, we construct a scheme in which networks withn inputs andn outputs have sizeO(n(logn)2) and depthO(logn), and we present deterministic and randomized on-line parallel algorithms to establish and abolish routes dynamically in these networks. In particular, the deterministic algorithm usesO((logn)5) steps to process any number of transactions in parallel (with one processor per transaction), maintaining a data structure that useO(n(logn)2) words.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.