Abstract

A general framework is presented for the design of parallel algorithms for two-dimensional, path-independent phase unwrapping of locally inconsistent, noisy principal-value phase fields that may contain regions of invalid information. This framework is based in Bayesian estimation theory with the use of Markov random field models to construct the prior distribution, so that the solution to the unwrapping problem is characterized as the minimizer of a piecewise-quadratic functional. This method allows one to design a variety of parallel algorithms with different computational properties, which simultaneously perform the desired path-independent unwrapping, interpolate over regions with invalid data, and reduce the noise. It is also shown how this approach may be extended to the case of discontinuous phase fields, incorporating information from fringe patterns of different frequencies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.