Abstract

This paper describes several parallel algorithms for solving nonlinear programming problems. Two approaches where parallelism can successfully be introduced have been explored: a quadratic approximation method based on penalty function and a dual method. These methods are improved by using two algorithms originally proposed for solving unconstrained problems: the parallel variable metric algorithm and the parallel Jacobson-Oksman algorithm. Even though general problems are dealt with, particular emphasis is placed on the potential of these parallel methods for separable programming problems. The numerical effectiveness of the algorithms is demonstrated on a set of test problems using a Cray-1S vector computer and serial computers (with respect to sequential versions of the same methods).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.