Abstract

Clustering techniques for large scale and high dimensional data sets have found great interest in recent literature. Such data sets are found both in scientific and commercial applications. Clustering is the process of identifying dense regions in a sparse multi-dimensional data set. Several clustering techniques proposed earlier either lack in scalability to a very large set of dimensions or to a large data set. Many of them require key user inputs making it hard to be useful for real world data sets or fail to represent the generated clusters in a intuitive way. We have designed and implemented, pMAFIA, a density and grid based clustering algorithm wherein a multi-dimensional space is divided into finer grids and the dense regions found are merged together to identify the clusters. For large data sets with a large number of dimensions fine division of the multi-dimensional space leads to an enormous amount of computation. We have introduced an adaptive grid framework which not only reduces the computation vastly by forming grids based on the data distribution, but also improves the quality of clustering. Clustering algorithms also need to explore clusters in a subspace of the total data space. We have implemented a new bottom up algorithm which explores all possible subspaces to identify the embedded clusters. Further our framework requires no user input, making pMAFIA a completely unsupervised data mining algorithm. Finally, we have also introduced parallelism in the clustering process, which enables our data mining tool to scale up to massive data sets and large set of dimensions. Data parallelism coupled with task parallelism have shown to yield the best parallelization results on a diverse set of synthetic and real data sets.KeywordsData MiningClusteringParallel AlgorithmsTask and Data ParallelismMassive data sets

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.