Abstract

Rule-based systems, on the surface, appear to be capable of exploiting large amounts of parallelism—it is possible to match each rule to the data memory in parallel. In practice, however, we show that the speed-up from parallelism is quite limited, less than 10-fold. The reasons for the small speed-up are: (1) the small number of rules relevant to each change to data memory; (2) the large variation in the processing required by the relevant rules; and (3) the small number of changes made to data memory between synchronization steps. Furthermore, we observe that to obtain this limited factor of 10-fold speed-up, it is necessary to exploit parallelism at a very fine granularity. We propose that a suitable architecture to exploit such fine-grain parallelism is a bus-based shared-memory multiprocessor with 32-64 processors. Using such a multiprocessor (with individual processors working at 2 MIPS), it is possible to obtain execution speeds of about 3800 rule-firings/sec. This speed is significantly higher than that obtained by other proposed parallel implementations of rule-based systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.