Abstract

In this paper, we consider solving matrix systems arising from the linear integral equations and PDE by two recent parallel techniques. The systems are indefinite due to linear constraints imposed on the fluid velocity. The first approach, known as the multilevel algorithm, employs a hierarchical technique to compute the constrained linear space for the unknowns, followed by the iterative solution of a positive definite reduced problem. The second approach exploits the banded structure of sparse matrices to obtain a different reduced system which is determined by the unknowns common to adjacent block rows. Although the reduced system in this approach may still be indefinite, the algorithm converges to the solution at an accelerated rate. These methods have two desirable characteristics, namely, robust numerical convergence and efficient parallelizability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.