Abstract

Going up further on the basis of excellent mechanical properties and solving the long-standing shortcoming of the slow degradation rate were developed in parallel for polylactic acid (PLA). The polylactic acid/wood flour/polymethylmethacrylate (PLA/WF/PMMA) composites were prepared by melt blending used PLA as matrix, WF of diverse particle size with PMMA at 8:2 mass ratio totally filled with 20 wt%. The PLA/WF/PMMA composites were studied by means of Fourier transform infrared spectroscopy (FTIR), differential scanning calorimeter (DSC), melting index test, and universal mechanical properties test. The result shows that WF of 150 μm < particle size < 180 μm executed the optimal improvement to mechanical properties of PLA/WF/PMMA. Tensile strength, flexural modulus and Young's modulus of PLA/WF/PMMA (150–180 μm) were enhanced 10.02%, 37.21% and 32.80% in relation to neat PLA, respectively. Hydrophilic contact angle test, water absorption measurement and hydrolysis assessment were performed to the hydrolysis degradation performance of materials. Furthermore, PMMA and WF cooperatively assisted in enormously accelerating hydrolysis of PLA, eventually having a good performance. Improving mechanical properties and accelerating degradation at the same time are of great significance for expanding the application of PLA.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.