Abstract
Design optimization problems with black-box computation-intensive objective and constraints are extremely challenging in engineering practices. To address this issue, an efficient metamodel-based optimization strategy using parallel adaptive kriging method with constraint aggregation (PAKM-CA) is proposed. In PAKM-CA, the complex expensive constraints are aggregated using the Kreisselmeier and Steinhauser (KS) function. Besides, based on the notion of Pareto nondomination in terms of objective optimality and KS function feasibility, a novel parallel comprehensive feasible expected improvement (PCFEI) function considering the correlations of sample points is developed to effectively determine the sequential infill sample points. The infill sample points with the highest PCFEI function values are selected to dynamically refine the kriging metamodels, which simultaneously improves the optimality and feasibility of optimization. Moreover, the optimization time can be further reduced via the parallel sampling framework of PCFEI. Then the convergence and efficiency merits of PAKM-CA are demonstrated via comparing with competitive state-of-the-art metamodel-based constrained optimization methods on numerical benchmarks. Finally, PAKM-CA is applied to a practical long-range slender guided rocket multidisciplinary design optimization problem to illustrate its effectiveness and practicality for solving real-world engineering problems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.