Abstract

Describes a new finite element scheme for the large‐scale analysis of compressible and incompressible viscous flows. The scheme is based on a combined compressible‐ incompressible Galerkin least‐squares (GLS) space‐time variational formulation. Three‐ dimensional unstructured meshes are employed, with piecewise‐constant temporal interpolation, local time‐stepping for steady flows, and linear continuous spatial interpolation in all the variables. The scheme incorporates automatic adaptive mesh refinement, with a choice of various error indicators. It is implemented on a distributed‐memory parallel computer, and includes an automatic load‐balancing procedure. Demonstrates the ability to solve both compressible and incompressible viscous flow problems using the parallel adaptive framework via numerical examples. These include Mach 3 flow over a flat plate, and a divergence‐free buoyancy‐driven flow in a cavity. The latter is a model for the steady melt flow in a Czochralski crystal growth process.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call