Abstract

The two most common approaches to managing shared-access memory-free lists and buddy systems-have significant drawbacks. Free list algorithms have poor memory access characteristics, and buddy systems utilize their space inefficiently. In this paper, we present an alternative approach to parallel-access memory management based on the fast-fits algorithm. A fast-fits memory manager stores free blocks in a tree structure, providing fast access and efficient space use. Since the fast-fits algorithm accesses fewer blocks than a free list algorithm, it reduces the amount of cache invalidation overhead due to the memory manager. Our performance experiments show that the parallel-access fast-fits memory manager allows significantly greater access rates than a serial-access fast-fits memory manager does. We note that shared-memory multiprocessor systems need efficient dynamic storage allocators, both for system purposes and to support parallel programs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.