Abstract

Hyperpolarization (HP) techniques are increasingly important in magnetic resonance imaging (MRI) and spectroscopy (MRS). HP methods have the potential to overcome the fundamentally low sensitivity of magnetic resonance (MR). A breakthrough of HP-MR in life sciences and medical applications is still limited by the small number of accessible, physiologically relevant substrates. Our study presents a new approach to extend PHIP to substrates that primarily cannot be hyperpolarized due to a steady intramolecular re-arrangement, the so-called keto-enol tautomerism. To overcome this obstacle we exploited the fact that instead of the instable enol form the corresponding stable ester can be used as a precursor molecule. This strategy now enables the hydrogenation which is required to apply the standard PHIP procedure. As the final step a hydrolysis is necessary to release the hyperpolarized target molecule. Using this new approach ethanol was successfully hyperpolarized for the first time. It may therefore be assumed that the outlined multi-step procedure can be used for other keto-enol tautomerized substances thereby opening the application of PHIP to a multitude of molecules relevant to analyzing metabolic pathways.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.