Abstract

The injection and storage of anthropogenic CO2 in the subsurface is being deployed as a climate change mitigation tool; however, diagenetic-paragenetic heterogeneity in sandstone reservoirs often contributes to interval specific chemomechanical changes that affect injection and can increase leakage risk. Here, we address reservoir heterogeneities’ impact on chemomechanical changes in a macroporous-dominated lithofacies of Morrow B sandstone, a formation containing several diagenetically-distinct hydraulic facies while undergoing enhanced oil recovery (EOR) and carbon dioxide (CO2) sequestration. We performed three flow-through experiments using a CO2-charged or uncharged formation water combined with four indirect tensile strength tests per post-test sample. We then used the microstructure and paragenetic sequence to understand chemomechanical weakening with key observations as follows: dissolution of carbonates and feldspars changed porosity; increased permeability led to reclassifying each sample in a different hydraulic flow unit; decreased ultrasonic velocity; and did not lead to a loss of tensile strength. Tensile strength maintenance occurred due to the low abundance and minor dissolution of siderite, the stability of quartz, and the relative position of diagenetic ankerite within feldspar. This macroporous-dominated lithofacies is the primary reservoir for the Morrow B Sandstone, and is analogous to other porous sandstone reservoirs. It represents an end-member of a chemomechanically low-risk siliceous CO2 sequestration and CO2-EOR reservoir.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call