Abstract

The subject of this research is the cryogenic formations found in gas emission funnels in the north of Western Siberia. The object of this research is cryogenic processes that prepare the explosion, which forms a gas emission funnel. The study of cryogenic structures that shape the walls of gas emission funnels is based on the structural-genetic analysis, which reveals the peculiarities of the initial cryogenic structure of frozen rock, as well as the cryogenic textures modified as a result of dynamic metamorphism. The authors examine such aspects of the topic as the general orientation of plastic and explosive deformations under the influence of high pressure. Analysis is conducted on the role of intra-ground gas filtration in transformation of the initial cryogenic structure. Special attention is given to the patterns of emergence and development of the local geodynamic system that ultimately substantiates the formation of gas emission funnel. The novelty of this research consists in the establishment of paragenetic relations between the processes of gas filtration and deformations of gas-saturated ice surface material (from viscoplastic motion to brittle fracture). The main conclusions are as follows: such external influences as increase in the temperature or pressure change thermodynamic conditions, which lead to multi-phase structural transformation of the initial cryogenic structure of the cryolithic zone; a series of plastic and explosive deformations instigates the intense heat and mass transfer, redistributing the substance in the liquid, solid and gaseous state; in frozen rocks, ice is the most deformable component, thus, most information on the processes preceding the formation of gas funnels can be acquired by studying the morphology of cryogenic formations observed in the walls of the funnels, as well as in the unthawed fragments of frozen rocks thrown to the surface. The authors’ special contribution lies in examination of the complete lifecycle of the development of selected geosystems, from the initial stage –  formation of conditions for decomposition of the gas hydrates, to the final stage – explosion and emission of ice surface material.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call