Abstract

Models of eye guidance in reading rely on the concept of the perceptual span-the amount of information perceived during a single eye fixation, which is considered to be a consequence of visual and attentional constraints. To directly investigate attentional mechanisms underlying the perceptual span, we implemented a new reading paradigm-parafoveal magnification (PM)-that compensates for how visual acuity drops off as a function of retinal eccentricity. On each fixation and in real time, parafoveal text is magnified to equalize its perceptual impact with that of concurrent foveal text. Experiment 1 demonstrated that PM does not increase the amount of text that is processed, supporting an attentional-based account of eye movements in reading. Experiment 2 explored a contentious issue that differentiates competing models of eye movement control and showed that, even when parafoveal information is enlarged, visual attention in reading is allocated in a serial fashion from word to word.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call