Abstract
We developed a model of paraffin wax crystal coarsening that well describes our experimental results and allows the behavior of the paraffin films to be predicted on the basis of the extracted kinetic parameters. Wax crystalline films were evaporated on different substrates (silicon wafer, glass slide, thin layer of gold on silicon), thermally treated at different temperatures (25–60 °C), and investigated by powder X-ray diffraction, high-resolution scanning electron microscopy, and optical confocal imaging of the surfaces. A preferred (110) crystal orientation of all deposited wax films, independent of substrate type, was observed from the start and increased during heat treatment. The change in preferred orientation was accompanied by changes in crystal morphology and shape, resulting in surface nanoroughening. We modeled the process as the coarsening of oriented C36H74 crystal islands driven by the decrease in total surface energy. Coarsening kinetics was controlled by diffusion of single molecular chains along the substrate. Evolution of nanoroughness during annealing time was well described by a surface coarsening law, Hr ∼ t1/4. Two additional factors influenced the evolution rate: strains accumulated in wax crystals during deposition, and the initial crystal shape diverged from the shape at equilibrium. Both factors lowered activation energy and effectively shortened coarsening time.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.