Abstract
Three-dimensional poly(L-lactic acid) (PLLA) scaffolds with high porosity and pore size ranging from 150 to 700 microm were conveniently prepared with paraffin spheres used as porogen. PLLA/1,4-dioxane solution containing a given amount of paraffin spheres was frozen at -25 degrees C to obtain a solidified mixture, followed with freeze drying and subsequent leaching with hexane to remove the 1,4-dioxane and paraffin spheres, respectively. The fabricated PLLA scaffolds were highly porous with evenly distributed and interconnected pores. The microstructures of the PLLA scaffolds as a function of paraffin-sphere size, paraffin-sphere dosage, and PLLA concentration were characterized by confocal laser scanning microscopy (CLSM) and scanning-electronic microscopy (SEM). To improve the cytocompatibility of the bioinert material, a hybrid PLLA scaffold containing Type I collagen was prepared by pressing the collagen solution into the scaffold under reduced pressure. The amounts of the collagen introduced in the scaffolds were detected by ninhydrin method. The distribution of the collagen in the scaffolds was studied with CLSM. Finally, in vitro cell culture was performed by injecting a chondrocyte suspension into the scaffolds. The results showed that the chondrocytes were more evenly distributed and more spread out in the collagen-modified PLLA scaffolds than in the unmodified ones.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Biomedical Materials Research Part B: Applied Biomaterials
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.